Pentafluoro- λ^6 -sulfanyl (SF₅) fluoroalkyl iodides Robin J. Terjeson, Julia Renn, Rolf Winter, Gary L. Gard * Department of Chemistry, Portland State University, Portland, OR 97207, USA Received 17 May 1996; accepted 9 September 1996 #### Abstract Keywords: Fluoroalkyl iodides; Mass spectroscopy; NMR spectroscopy; Pentafluorothio; Preparation #### 1. Introduction Fluoroalkyl iodides are an important class of compounds used in the preparation of many useful fluoro-organo and fluoro-organometallic derivatives [1]. The SF₅-containing fluoroalkyl iodides SF_5CF_2I [2], $SF_5(C_2F_4)_nI$ (n = 1, 2, 3) [3], $SF_5CF(I)CF_3$ [4], $SF_5CF=CFI$ [5,6], $SF_5C=CI$ [7] and SF₅CF(I)CF₂CF₃ [8] have been reported. The iodides SF₅R_fI and their ethylene adducts, SF₅R_fCH₂CH₂I, where R_f represents at least three fully fluorinated carbon atoms, have also been reported [9-11]; very little information has been given regarding the preparation, identification and properties of these compounds. The characterization and isolation of the known SF₅ fluoroalkyl iodides listed above have, in many cases, proved difficult. The incorporation of the SF₅ group into a carbon-containing system is well known using SF₅X (X = Br, Cl). Since SF_5I is unknown, the chemistry of the readily accessible SF₅C₂F₄I was studied. We report the preparation and properties of a number of SF₅-containing fluoroalkyl iodides derived from an improved synthesis of SF₅CF₂CF₂I [3]: SF₅CF₂CF₂CH₂CH₂I, SF₅CF₂CF₂CF₂-SF₅CF₂CF₂(CH₂CH₂)₂I, SF₅CF₂CF₂CH=CHI/ isomer and SF₅CF₂CF₂CHFCF₂I/isomer. In addition, higher molecular weight SF₅ fluoroalkyl iodides, SF₅(CF₂)₆I, SF₅CF₂CF₂(CHFCF₂)₂I/isomer and SF₅CF₂CF₂(CH₂-CH₂)₃I, have been identified via gas chromatographymass spectroscopy (GC-MS). #### 2. Results and discussion In order to prepare SF₅-containing iodides, it was necessary to modify the method reported by Hutchinson [3]. Hutchinson's method employs tetrafluoroethylene at high pressure (150 psi) [3]. However, since it is known that C₂F₄ may explosively polymerize at this pressure, it was critical to study alternative preparative conditions. We have modified this reaction to produce safely, at lower pressure (88–103 psi), SF₅CF₂CF₂I in yields of about 50% with re-use of the unreacted starting material. The reactants were condensed into a metal pressure vessel, heated to 150 °C, and allowed to react with periodic shaking for 4-5 h. The reaction was quenched in cold water and stored at 0 °C until distillation. To improve and maximize the separation during distillation, a 100 mm column filled with Monel helices was used. In order to remove any iodine, the product was shaken with mercury. $$S_2F_{10} + ICF_2CF_2I + CF_2 = CF_2 \xrightarrow{\text{150 °C}} SF_5CF_2CF_2I \text{ (major)}$$ $$+ SF5(CF2CF2)2I (minor)$$ (1) The pot contained small amounts of SF₅(CF₂CF₂)₂I as identified by its characteristic ¹⁹F nuclear magnetic resonance (NMR) spectrum. The reactions of SF₅CF₂CF₂I were carried out in a Carius tube containing mercury; irradiation was performed with a halogen lamp for 3–6 weeks. In some cases, the olefin or acetylene was added in aliquots during the course of the ^{*} Corresponding author. Table 1 GC-MS data^a | Compound | Retention time (min) | Major peaks | |--|----------------------|---| | SF ₅ CF ₂ CF ₂ CH ₂ CH ₂ I | 7.10 | 316 M – F ₂ ⁺ ; 240 M – F ₆ ⁺ , SF ₅ CF ₂ CF ₂ CH ₂ ; 189 C ₂ F ₂ I ⁺ , C ₂ F ₇ S ⁺ ; 158 SF ₅ CF ⁺ , CFI ⁺ ; 127 SF ₅ ⁺ , I ⁺ ; 89 SF ₃ ⁺ ; 31 CF ⁺ | | SF ₅ CF ₂ CF ₂ (CH ₂) ₄ I | 10.75 | 410 M ⁺ ; 283 M – I ⁺ , M – SF ₅ ⁺ ; 175 F(CF ₂) ₂ (CH ₂) ₄ ⁺ ; 156 M – I – SF ₅ ⁺ ; 127 SF ₅ ⁺ , I ⁺ ; 81 CF ₂ CF ⁺ | | $SF_5(CF_2)_4I$ | 4.20 | $454 \text{ M}^+; 327 \text{ M} - \text{I}^+, \text{M} - \text{SF}_5^+; 219 \text{ F}(\text{CF}_2)_4^+; 181 \text{ CF}(\text{CF}_2)_3^+; 127 \text{ SF}_5^+, \text{I}^+; 69 \text{ CF}_3^+$ | | SF ₅ CF ₂ CF ₂ CH=CHI | 5.85 trans, 7.12 cis | 380 M ⁺ ; 127 SF ₅ ⁺ , I ⁺ | | SF ₅ CF ₂ CF ₂ CHFCF ₂ I, SF ₅ CF ₂ CF ₂ CF ₂ CHFI | 5.45 and 4.95 | 436 M ⁺ ; 201 M – I – SF ₄ ⁺ ; 127 SF ₅ ⁺ , I ⁺ ; 100 C ₂ F ₄ ⁺ ; 89 SF ₃ ⁺ ; 82 C ₂ F ₃ H ⁺ | | SF ₅ (CF ₂) ₆ I | 6.16 | 554 M^+ ; $319 \text{ M} - 1 - \text{SF}_4^+$; 127 SF_5^+ , 1^+ ; $100 \text{ C}_2\text{F}_4^+$ | | SF ₅ CF ₂ CF ₂ (CHFCF ₂) ₂ I, SF ₅ CF ₂ CF ₂ (CF ₂ CHF) ₂ I | 8.31 and 8.25 | 518 M ⁺ | | SF ₅ CF ₂ CF ₂ (CH ₂) ₆ I | 12.6 | 438 M ⁺ ; 311 M – I ⁺ , M – SF ₅ ⁺ ; I27 SF ₅ ⁺ , I ⁺ | ^aData taken on a VG 7070 HS mass spectrometer operated at 70 eV with a 25 m DB5 column. Temperature range 50–280 °C at 18 °C min⁻¹. Hutchinson [3] reported higher homologs identified from a mixture by gas–liquid chromatography (GLC): $SF_5(CF_2)_2I$, $SF_5(CF_2)_4I$, $SF_5(CF_2)_6I$, $SF_5(CF_2)_6I$, $SF_5(CF_2)_10I$. reaction in an attempt to keep the initial pressure below 2 atm. $$SF_5CF_2CF_2I + CH_2 = CH_2 \xrightarrow{Hg, h\nu} SF_5CF_2CF_2CH_2CH_2I$$ (2) $$SF_5CF_2CF_2I + CF_2 = CF_2 \xrightarrow{Hg. h\nu} SF_5CF_2CF_2CF_2CF_2I$$ (3) $$SF_5CF_2CF_2I + CH \equiv CH \rightarrow SF_5CF_2CF_2CH = CHI$$ (4) $SF_5CF_2CF_2CH_2CH_2I$ $$+CH_2=CH_2 \xrightarrow{Hg, h\nu} SF_5CF_2CF_2CH_2CH_2CH_2CH_2I \quad (5)$$ $$SF_5CF_2CF_2I + CHF = CF_2 \rightarrow SF_5CF_2CF_2CHFCF_2I$$ (6) In reactions (3), (5) and (6), a GC-MS study showed the presence of higher homologs (see Table 1). Reactions (4) and (6) gave isomeric products. The infrared (IR) spectral data for SF₅CF₂CF₂CH₂CH₂I, SF₅CF₂CF₂CF₂CF₂I, SF₅CF₂CF₂(CH₂)₄I, SF₅CF₂CF₂-CHFCF₂I (and isomer) and SF₅CF₂CF₂CH=CHI (cis and trans isomers) are listed in Section 3. All spectra exhibit strong SF₅ stretching modes in the region 876-884 cm⁻¹. The CF stretching frequencies between 1100 and 1227 cm⁻¹ are present in all compounds. One of the SF₅ deformation modes for the above compounds appears in the 604-610 cm⁻¹ range. Cross et al. [12] have reported the SF₅ stretching frequency as a strong band in the 850-920 cm⁻¹ region with a deformation mode near 600 cm⁻¹. The CH vibrations in SF₅CF₂CF₂CHFCF₂I and SF₅CF₂CF₂CH=CHI/isomer occur at 2996 cm⁻¹ and 3083 cm⁻¹ respectively. The CH₂ vibrations in SF₅CF₂CF₂CH₂CH₂I appear at 2984 and 2967 cm⁻¹, with absorption peaks for SF₅CF₂CF₂(CH₂)₄I occurring at 2958 and 2879 cm⁻¹. The C=C vibration is found at 1618 cm⁻¹. The major mass spectral peaks for each compound are listed in Section 3. Molecular ion peaks are observed for all compounds, except SF₅CF₂CF₂CH₂CH₂I, where the highest peak corresponds to $M-2F^+$. A GC-MS study found that higher homologs were present in the addition reactions for $SF_5CF_2CF_2I$ with $CF_2=CF_2$ and $CHF=CF_2$ and in the reaction of $SF_5CF_2CF_2CH_2CH_2I$ with $CH_2=CH_2$. Retention times are given in Table 1 for derivatives of $SF_5CF_2CF_2I$ and their higher homologs. It should be noted that Hutchinson [3] found higher homologs of $SF_5CF_2CF_2I$ when reacting $CF_2=CF_2$ with S_2F_{10} and I_2 . The ¹H and ¹⁹F NMR spectral data for the compounds are given in Table 2. The ¹⁹F spectra for the compounds show an AB₄ pattern for the SF₅ group: A (distorted pentet or nineline pattern) at $\delta = 63.5$ –67.2 ppm; B (doublet) at $\delta = 44.2$ – 45.5 ppm; these chemical shifts for SF₅CF₂CF₂I are found at δ = 65.4 and 47.3 ppm. Hutchinson [3] reports finding these resonances at $\delta = 64$ and 46 ppm. For comparison, SF_5CF_2I and $SF_5CF_2CF_2Br$ exhibit the AB_4 splitting pattern at $\delta = 66.5$ and 61.5 ppm (nine-line pattern) and 36.5 and 44.3 ppm (doublet) [2,13]. The chemical shifts of the CF₂ fluorines adjacent to the SF₅ group in the above compounds are located in the range $\delta = -89.0$ to -97.5 ppm; this shift is $\delta = -89$ ppm for SF₅CF₂CF₂I [3]. In SF₅CF₂CF₂I and SF₅(CF₂)₄I, the CF_2I fluorines have chemical shifts of $\delta = -61.7$ and -59.5 ppm respectively; in SF₅CF₂I and SF₅CF₂CF₂I, this resonance is found at $\delta = -88.8$ and -60 ppm respectively [2,3]. Internal CF₂ groups contain multiplets ranging from $\delta = -115.9$ to -138.0 ppm. The CF₂ fluorines adjacent to CH or CH₂ groups in other iodides are in the range $\delta = -117.2$ to -120.7 ppm [14]. The coupling constants for the AB4 fluorines were consistent in all the compounds with $J_{a,b}$ values ranging from 146.5 to 146.7 Hz; for SF₅C \equiv CI and SF₅CF=CFI, the AB₄ coupling constant was found to be 147.3 Hz [5,7]. ¹H NMR assignments for $SF_5CF_2CF_2CH_2CH_2I$ and $SF_5CF_2CF_2(CH_2CH_2)_2I$ are in the range $\delta=1.52-3.18$ ppm; in $SF_5CF_2CF_2CH=CHI$, the ¹H chemical shifts adjacent to CF_2 are found at $\delta=6.75$ ppm (trans) and $\delta=6.81$ ppm (cis), and for the CHI proton they are at $\delta=7.46$ ppm (trans) and 7.39 ppm (cis). Coupling constants for the hydrogens in Table 2 Proton and ¹⁹F NMR data for new compounds | Compound | Chemical shift (ii | n ppm from CFCl3 or ' | Chemical shift (in ppm from CFCl ₃ or TMS, coupling constants in hertz) | s in hertz) | | | | ļ | |--|---------------------------------|-----------------------------------|--|--------------------------------|---|--------------------|-------------------|---| | | 2 | þ | o o | þ | ນ | f | ક્ક | h | | F*-SF4-CF2-CF21 | 65.4(p) | 47.25(d) | -89.0(p,t,d) | -61.7(p,t) | 1 = 1 A | | | | | F*_SF;_CF;_CF;CH;CH! | 65.3(p) | 45.5(d,m) | - 95.89(m) | -115.9(m) | 1.52 | 2.03 | | | | Fª_SF\$_CF\$_CF\$CF\$1 | $J_{a,b} = 146.6$
63.5(p,m) | $J_{\rm bc} = 15.0$
44.64(d,p) | $J_{d,e} = 21.55$
- 94.6(p,m) | $J_{e,f} = 5.64$
- 122.1(m) | -112.8(t,t) | -59.5(t,t) | | | | The state of s | $J_{a,b} = 146.6$ | $J_{b,c} = 14.5$ | $J_{c,d} = 16$ | $J_{d,c} = 16.9$ | $J_{\rm d,f} \sim 3$ | $J_{c,e} = 4$ | $J_{e,f} = 15.5$ | | | F"-SF4-CF3-CF3CH′≡CH'I (trans) | 65.10(p,m)
$J_{a,b} = 146.5$ | $44.2(d,m)$ $J_{a,c} = 4.8$ | -96.02(p)
$J_{b,c} = 13$ | $J_{c,d} = 112.19(d,t)$ | 5.75(4,1)
$J_{f,d} = 2.16$ | $J_{e,f} = 14.9$ | $J_{e,d} = 11.16$ | | | $F^{a}-SF_{4}^{b}-CF_{2}-CF_{2}^{i}CH^{c}=CH^{i}I$ (cis) | 65.15(p,m) | 44.2(p) | -96.65(p) | -110.90(d,t) | 6.81(d,t) | 7.39(d,t) | | | | | $J_{a,b} = 146.5$ | $J_{a,c} = 4.8$ | $J_{\rm b,c} = 13$ | $J_{c,d} = 11.0$ | $J_{f,d} = 3.36$ | $J_{e,f} = 9.62$ | $J_{e,d} = 13.1$ | | | F"–SF"–CF3–CF3CH3CH3U | 67.2(m)
$J_{ab} = 146.7$ | $45.0(d,m)$ $J_{b,c} \sim 13$ | $-97(7 line)$ $J_{b,4} \sim 13$ | -117.2(m) | 3.18, 2.28, 2.07, 1.82 multiplets in H | 32 multiplets in H | | | | F*_SF2^_CF2^*_CH*F'CF3**'I | 64(m) | 44.7(d,m) | -95.7 to
- 97.5(m) | Fluorines next to | Fluorines next to iodine -52 to -61.3 | .3 | | | | F³–SF²–CF²–CF²CF²." CF¹H⁵I | 64.0(m) | 44.7(d,m) | -95.7 to
-97.5(m) | Fluorines next to | Fluorines next to iodine - 52 to 61.3 | 3 | | | Table 3 ¹³C NMR spectral data (proton decoupled)^a | Compound | C, | C_{eta} | C, | C, | $J_{a,\mathrm{b}}$ | $J_{\alpha,c}$ | $J_{\alpha,d}$ | $J_{eta,c}$ | $J_{eta c}$ $J_{\delta, m f}$ $J_{\gamma, m c}$ | $J_{\delta,\mathrm{f}}$ | Jye | |---|--------------|------------------------------|----------------------|--|------------------------------|----------------|--|-------------------------|---|-------------------------|-------| | $F^a - SF_4 - C^oF_2 - C^bF_2^4I$ | 119.0(t,p,t) | σ, | 1 | ; | 25.9 | 305.5 | 34.5 | 42.06 | 323.0 | 1 | • | | F"-SF ₂ -C"F ₂ -C"F ₂ C"H ₂ C | 121.65(t,m) | 117.4(t,t) | 37.50(t) | -11.61(t) | $\frac{3.4}{J_{R,d}} = 5.05$ | 305.9 | $J_{\gamma,d} = 12.47$ | | 700.0 | | | | ₽ª–SF₄−CªF₂−C⁴F₂ℂ⅋⅀ℂ⅋⅀Ӏ | 121.2(t,p,t) | 109.4(t,t) | 108.8(1,t) | 93.4(t,t) | 36.8 $J_{\delta,e} = 42$ | 311.8 | 27 $J_{\alpha,b} = 36.8$ | 32.6 $J_{y,d} = 31.8$ | 275.1 3 | 321.4 | 269.7 | | F"-SF\$_C°F\$_C°F\$_C'H*=C^HI'I (trans) F"-SF\$_C°F\$_C°F\$_C'H*=C^HI'I (cis) | 121.6(t,p.t) | 114.0(t,p,t)
113.9(t,p,t) | 132.3(t)
128.0(t) | 91.72 37.9 89.7(t) $J_{k,d} = 11.06$ (cis, 7.06) | 37.9
s, 7.06) | 306 | 25.2 $J_{\rm v,d} = 24.2 (\text{cis}, 23.8)$ | 31 | 258.0 | | | ^aChemical shifts in parts per million from TMS and coupling constants in hertz. the isomer were assigned with the larger value corresponding to the trans isomer: J = 14.9 and 9.62 Hz. This assignment agrees with previous results found for other cis and trans isomers [15]. #### 3. Experimental details The reactants $CF_2=CF_2$, S_2F_{10} and $CHF=CF_2$ were obtained from PCR; CH≡CH and CH₂=CH₂ were purchased from Air Products and Airco, respectively, and were used as received. ICF₂CF₂I was prepared in our laboratory using a modified literature method [17,18]. IR spectra were obtained using a Nicolet 20 DX FTIR spectrometer operating at 2.0 cm⁻¹ resolution or a Perkin Elmer System 2000 FTIR spectrometer operating at 1.0 cm⁻¹ resolution, using KBr cells for liquids and solids. Mass spectra were measured on a VG 7070 HS mass spectrometer operated at 70 eV. NMR spectra were obtained on a Varian EM-390 spectrometer operating at 90.00 MHz for ¹H and 84.67 MHz for ¹⁹F with F-11 as internal standard, or a Bruker AMX-400 operating at 100.6 MHz for ¹³C and 400.1 MHz for ¹H, both using tetramethylsilane (TMS) as internal standard. Elemental analyses were determined by Beller Microanalytical Laboratory, Gottingen, Germany. ## 3.1. Preparation of SF₅CF₂CF₂I Into a 150 ml Hoke stainless steel vessel, equipped with a Whitey stainless steel valve, 11.68 g (32.99 mmol) of ICF_2CF_2I was pipetted. The reaction vessel containing ICF_2CF_2I was cooled to -196 °C and evacuated, and 10.28 g (32.09 mmol) of S_2F_{10} and 2.98 g (29.80 mmol) of CF_2 — CF_2 were added. The mixture was heated with the lower half of the reaction vessel in an oil bath (or heating tube) at 155 ± 5 °C for 4.0 h with shaking every 20–30 min. The reaction was quenched with cold water and stored at 0 °C overnight. Distillation with a 2.5 mm×100 mm column packed with 0.05 in×0.05 in×0.1 in Monel helices gave 10.26 g (28.98 mmol) of $SF_3CF_2CF_2I$ collected at 82–86 °C (48.6% yield based on CF_2 — CF_2 used) (96% pure by NMR). The violet liquid was treated with Hg to remove I_2 . The IR spectrum for $SF_5CF_2CF_2I$ shows the following peaks: 1217 (ms), 1204 (ms), 1163 (s), 1133 (s), 1109 (s), 1044 (m), 977 (w), 884 (vs), 835 (w), 814 (w), 764 (vw), 732 (s), 702 (s), 675 (mw), 653 (vw), 602 (s), 582 (m), 574 (m), 537 (vw), 417 (w). # 3.2. General procedure for derivatives of SF₅CF₂CF₂I The reactants were pipetted or condensed at -196 °C into Pyrex glass Carius tubes (volume: 50, 100, 200 and 300 ml) equipped with Kontes Teflon stopcocks and containing a small amount of mercury. Gases were condensed into the reaction vessel at -196 °C. The vessel was irradiated with a Sylvania Capsylite Halogen Par 38 lamp at a distance of 12– 18 in for several days to weeks (wavelengths of the halogen lamps were in the range of approximately 250-800 nm). During this time, the reaction mixture was shaken (five times in 24 h). The temperature in the warmest portion of the irradiation zone was approximately 54 °C. The pressure of the volatile components decreased as the reaction proceeded; a red solid, HgI₂, was also formed. The pressure of the reaction mixture was determined via the use of a vacuum line; a Heise Bourdon (0-1000 mmHg) gauge attached to the vacuum line was used to measure the pressure. When the reaction was found to be complete (no further pressure change observed), the volatile materials were transferred from the reaction vessel which had been cooled to -24 °C. ## 3.3. Reaction of $SF_5CF_2CF_2I$ with $CH_2=CH_2$ Into a 300 ml Carius tube containing 0.48 g Hg was pipetted 5.29 g (14.9 mmol) of $SF_5CF_2CF_2I$; 0.48 g (17.4 mmol) of CH_2 = CH_2 was condensed under vacuum into the reactor cooled to -196 °C. The reaction mixture was irradiated for 7 days with shaking (five times in 24 h). The volatile materials were removed at -24 °C and distillation of the non-volatile material at reduced pressure gave 5.08 g (13.3 mmol) of colorless liquid $SF_5CF_2CF_2CH_2CH_2I$ (boiling point (b.p.), 53.5 °C at 16 mmHg) in 89.0% yield. The IR spectrum for $SF_5CF_2CF_2CH_2CH_2I$ shows the following peaks: 2984 (w), 2967 (w), 1496 (vw), 1444 (m), 1356 (m), 1310 (m), 1262 (m), 1187 (vs), 1165 (w), 1118 (s), 1076 (s), 955 (w), 916, 877, 825 (vs), 802 (s), 761 (s), 761 (s), 683 (m), 647 (vw), 606 (s), 580 (ms), 527 (s), 416 (w). A molecular ion peak and appropriate fragments were observed in the mass spectrum for $SF_5CF_2CF_2CH_2CH_2I$. Major peaks include: 382 (M⁺); 155 ((CF₂)₂-(CH₂)₃CH⁺); 141 ((CF₂)₂(CH₂)₂CH⁺ or CH₂I⁺); 128 (HI⁺, (CF₂)₂(CH₂)₂⁺); 127 (SF₅⁺, I⁺); 100 (CF₂CF₂⁺); 89 (SF₃⁺); 77 (CF₂C₂H₃⁺); 69 (CF₃⁺); 65 (CF₂CH₃⁺); 51 (SF⁺) 47 (C₂H₄F⁺); 28 (C₂H₄⁺); 27 (C₂H₃⁺). Analysis: calculated for SF₅CF₂CF₂CH₂CH₂I: C, 12.6%; H, 1.05%; F, 44.8%; found: C, 13.3%; H, 0.96%; F, 44.2%. ### 3.4. Reaction of $SF_5CF_2CF_2CH_2CH_2I$ with $CH_2=CH_2$ Into a 200 ml quartz vessel cooled to -196 °C, 1.62 g (4.24 mmol) of SF₅CF₂CF₂I and 4.78 mmol of CH₂=CH₂ were condensed. The reaction mixture was irradiated for 7 days with shaking (five times in 24 h). The mixture was then transferred to a 100 ml Carius tube containing a few drops of tert-butylperoxide. An additional 4.52 mmol of $CH_2=CH_2$ was added and the mixture was heated at 100 °C for 21 h and at 132 °C for 64 h. Distillation under reduced pressure gave 0.82 g (2.0 mmol) of colorless liquid (b.p., 99–103 °C at 198 mmHg) in 42.7% yield. The IR spectrum of $SF_5CF_2CF_2(CH_2CH_2)_2I$ shows the following peaks: 2958 (wm), 2879 (w), 1463 (vw), 1437 (vw), 1384 (vw), 1362 (vw), 1322 (vw), 1293 (vw), 1257 (w), 1187 (s), 1115 (m), 1000 (w), 877 (vs), 825 (vs), 738 (m), 729 (m), 681 (m), 604 (s), 574 (wm), 544 (w), 527 (w). A molecular ion peak and appropriate fragments were observed in the mass spectrum for SF₅CF₂CF₂(CH₂CH₂)₂I and SF₅CF₂CF₂(CH₂CH₂)₃I. Major peaks for SF₅CF₂CF₂- $(CH_2CH_2)_2I$ include: 410 (M^+) ; 175 $(C_2F_5C_4H_8^+)$; 155 $((CF_2)_2(CH_2)_3CH^+);$ 141 $((CF_2)_2(CH_2)_2CH^+$ CH_2I^+); 135 ($C_6F_3H_6^+$); 128 (HI^+ , (CF_2)₂(CH_2)⁺₂); 127 $(SF_5^+, I^+, C_2F_4C_2H_3^+); 115 (CF_2CF_2CH_3^+); 95 (C_3F_3H_2^+);$ 91 $(C_4F_2H_5^+)$; 89 (SF_3^+) ; 85 $(C_5H_6F^+)$; 77 $(CF_2C_2H_3^+)$; 73 $(C_4H_6F^+)$; 69 (CF_3^+) ; 65 $(CF_2CH_3^+)$; 64 $(CF_2CH_2^+)$; 61 $(C_3H_6F^+)$; 59 $(C_3H_4F^+)$; 55 $(C_4H_7^+)$; 53 $(C_4H_5^+)$; 51 $(SF^+, CF_2H^+); 47(C_2H_4F^+); 42(C_3H_6^+); 41(C_3H_5^+); 39$ $(C_3H_3^+)$; 29 $(C_2H_3^+)$; 28 $(C_2H_4^+)$; 27 $(C_2H_3^+)$. Major peaks for $SF_5CF_2CF_2(CH_2CH_2)_3I$ include: 439 $(M+H^+)_1$; 438 (M^+) ; 313 $(M-I \text{ or } SF_5+2H)^+$; 312 $(M-I \text{ or } SF_5+2H)^+$ $SF_5 + 1H)^+$; 311 $(M-I \text{ or } SF_5)^+$; 155 $((CF_2)_2 - (CF_3)_2 - (CF_3)_3 (CF_$ $(CH_2)_3H^+$); 127 (SF_5^+, I^+) ; 89 (SF_3^+) ; 77 $(CF_2C_2H_3^+)$; 69 (CF_3^+) ; 55 $((CH_2)_3CH^+)$; 47 $(FCH_2CH_2^+)$; 43 $((CH_2)_3H^+); 42((CH_2)_3^+); 41(C_3H_5^+); 39(C_3H_3^+).$ # 3.5. Reaction of $SF_5CF_2CF_2I$ with $CH \equiv CH$ To a 50 ml Pyrex glass Carius tube containing 0.20 g of Hg, 1.49 g (4.21 mmol) of SF₅CF₂CF₂I was added; 3.00 mmol of CH≡CH was then added at -196 °C and the reaction mixture was warmed to room temperature and irradiated for 6 days with shaking (six times in 24 h). An additional 2.08 mmol of CH≡CH was added and the reaction mixture was irradiated for another 15 days. The volatile materials were removed at -25 °C and the product was stored at 0 °C. A second run using 1.71 g (4.83 mmol) of SF₅CF₂CF₂I and 2.87 mmol of CH≡CH was irradiated for 8 days, after which 3.30 mmol of CH≡CH was added and irradiated for an additional 11 days. The volatile materials were removed, and distillation of combined runs 1 and 2, at reduced pressure, gave 2.42 g (6.38 mmol) of a colorless liquid (b.p., 99-103 °C at 198 mmHg) in 74% yield. The ¹⁹F NMR data showed a mixture of approximately 14% cis- and 86% trans-SF₅CF₂CF₂CH=CHI. Analysis: calculated for SF₅CF₂CF₂CH=CHI: C, 12.6%; H, 0.53%; F, 45.0%; found: C, 12.7%; H, 0.48%; F, 44.7%. The IR spectrum for $SF_5CF_2CF_2CH$ =CHI shows the following peaks: 3083 (vw), 1618 (m), 1333 (vw), 1294 (w), 1257 (w), 1222 (m), 1196 (ms), 1117 (ms), 1086 (m), 979 (w), 944 (m), 876 (vs), 838 (vs), 804 (m), 775 (w), 746 (w), 670 (w), 632 (vw), 604 (m), 573 (w), 547 (w), 533 (vw), 479 (vw). GC-MS analysis shows a molecular ion peak and appropriate fragments for both cis and trans isomers of $SF_5CF_2CF_2CH$ =CHI, as identified by the ratios from the ¹⁹F NMR spectrum and the peak ratios in GC. Major peaks for *trans*- $SF_5CF_2CF_2CH$ =CHI include: 380 (M⁺); 203 (CF₂C₂H₂⁺); 127 (SF₅⁺, I⁺); 126 (C₂F₄C₂H₂⁺); 89 (SF₃⁺); 76 (CF₂C₂H₂⁺); 75 (CF₂C₂H⁺); 69 (CF₃⁺); 57 (C₃H₂F⁺); 31 (CF⁺). Major peaks for *cis*- $SF_5CF_2CF_2CH$ =CHI include: 380 (M⁺); 203 (CF₂C₂H₂⁺); 127 (SF₅⁺, I⁺); 126 (C₂F₄C₂H₂⁺); 75 (CF₂C₂H⁺). ## 3.6. Reaction of $SF_5CF_2CF_2I$ with $CF_2=CF_2$ Into a 100 ml Carius tube containing 0.36 g of Hg and 3.04 g (8.47 mmol) of $SF_5CF_2CF_2I$, 0.83 g (8.29 mmol) of $CF_2=CF_2$ was added at -196 °C. The reaction mixture was irradiated for 5 days with shaking (five times in 24 h). An additional 0.12 g (1.2 mmol) of $CF_2=CF_2$ was added and irradiated for 14 days with shaking (five times in 24 h). After the volatile materials had been removed at -24 °C, distillation of the remaining non-volatile material at reduced pressure gave 0.92 g of colorless liquid $SF_5(C_2F_4)_2I$ (b.p., 72–79 °C at 92 mmHg). The lower boiling fraction (45–72 °C) and the volatile material were returned to the reaction vessel and allowed to react for an additional 13 days. Distillation, at reduced pressure, of all of the products gave 1.32 g (2.9 mmol) of colorless liquid (b.p., 71 °C at 104 mmHg) in 34.3% yield. Analysis: calculated for $SF_5(C_2F_4)_2I$: C, 10.58%; H, 0.0%; F, 54.4%; found: C, 10.63%; H, <0.1%; F, 54.2%. The IR spectrum for $SF_5(C_2F_4)_2I$ shows the following peaks: 1309 (vw), 1227–1217 (s, b), 1154 (vs), 1114 (m), 1067 (wm), 1044 (vw), 918 (s), 885 (vs), 838 (m), 815 (vw), 794 (vw), 786 (vw), 769 (m), 732 (w), 720 (vw), 687 (w), 669 (m), 653 (m), 610 (m), 588 (m), 570 (m). GC–MS analysis of the fraction boiling at 72–79 °C at 92 mmHg shows a molecular ion peak and appropriate fragments for both $SF_5(C_2F_4)_2I$ and $SF_5(C_2F_4)_3I$. Major peaks for $SF_5(C_2F_4)_2I$ include: 454 (M⁺); 327 ((CF₂)₄I⁺, (CF₂)₄SF₅⁺); 239 (C₃F₄I⁺, C₃F₄SF₅⁺); 208 (SC₂F₈⁺); 181 ((CF₂)₃CF⁺); 177 (SF₅CF₂⁺, CF₂I⁺); 131 (C₃F₅⁺); 127 (SF₅⁺, I⁺); 119 (C₂F₅⁺); 100 (C₂F₄⁺); 89 (SF₃⁺); 69 (CF₃⁺). Major peaks for $SF_5(C_2F_4)_3I$ include: 554 (M⁺); 319 (MF⁺ – SF₅, I⁺); 281 (C₆F₁⁺); 231 (C₅F₉⁺); 227 (C₂F₄SF₅⁺, C₂F₄I⁺); 181 (C₄F₇⁺); 177 (SF₅CF₂⁺, CF₂I⁺); 169 (C₃F₇⁺); 131 (C₃F₅⁺); 127 (SF₅⁺, I⁺); 119 (C₂F₅⁺); 100 (C₂F₄⁺); 89 (SF₃⁺); 69 (CF₃⁺). ## 3.7. Reaction of $SF_5CF_2CF_2I$ with $CHF=CF_2$ Into a 300 ml Carius tube containing 0.36 g of Hg and 3.47 g (9.80 mmol) of SF₅CF₂CF₂I, was added 0.79 g (9.63 mmol) of CHF=CF₂. The reaction mixture was irradiated for 16 days with shaking (five times in 24 h). An additional 0.54 g (6.64 mmol) of CHF=CF₂ was added and allowed to react for 26 days. After the volatile materials had been removed at -24 °C, distillation of the remaining material, at reduced pressure, gave 1.31 g of colorless liquid SF₅CF₂CF₂CHFCF₂I (b.p., 107-117 °C at 236 mmHg) in 19.4% yield. The IR spectrum for $SF_5CF_2CF_2CHFCF_2I$ shows the following peaks: 2996 (w), 1887 (vw), 1714 (w), 1571 (vw), 1508 (vw), 1450 (vw), 1384 (w), 1368 (w), 1342 (w), 1278 (wm), 1200 (vs, b), 1159 (vs), 1141 (vs), 1121 (s), 1077 (m), 1043 (wm), 970 (wm), 881 (vs, b), 850 (s), 838 (s), 810 (m), 773 (wm), 734 (wm), 688 (m), 650 (wm), 607 (s), 571 (s), 528 (w), 477 (vw). GC-MS analysis of the fraction boiling at 107-117 °C at 236 mmHg shows a molecular ion peak and appropriate fragments for SF₅(CF₂)₂CHFCF₂I and its isomer SF₅(CF₂)₂CF₂CFHI, as well as two additional peaks corresponding to the M⁺ peak representing SF₅(CF₂)₂-(CF₂CFH)₂I and its isomer. Major peaks for one of the single addition products include: 436 (M⁺); 201 (C₄F₈H⁺); 177 $(SF_5CF_2^+, CF_2I^+); 163 ((CF_2)_3CH^+); 131 (C_3F_5^+); 127$ (SF_5^+, I^+) ; 119 $(C_2F_5^+)$; 113 $(C_2F_4CH^+)$; 100 $(C_2F_4^+)$; 89 (SF_3^+) ; 82 $(C_2F_3H^+)$; 69 (CF_3^+) ; 51 (SF^+, CF_2H^+) ; 31 (CF⁺); 28 (C₂H₄⁺). For the second single addition product, the major peaks include: 436 (M^+); 209 ($C_2F_3HI^+$); 201 $(C_4F_8H^+);$ 190 $(CF_2HI^+);$ 163 $((CF_2)_3CH^+);$ 159 $(CHFI^+)$; 131 $(C_3F_5^+)$; 127 (SF_5^+, I^+) ; 119 $(C_2F_5^+)$; 113 $(C_2F_4CH^+)$; 100 $(C_2F_4^+)$; 89 (SF_3^+) ; 82 $(C_2F_3H^+)$; 69 (CF_3^+) ; 51 (SF^+, CF_2H^+) ; 32 (CHF^+) ; 31 (CF^+) ; 28 $(C_2H_4^+)$. GC-MS analysis for the double addition product gave two peaks, each showing a molecular ion peak at 518, corresponding to two isomers in which the hydrogen could be on the carbon next to the iodine or on an internal carbon (see Table 1). ### Acknowledgements We are grateful to the National Science Foundation (CHE-9632815) and the Petroleum Research Foundation (ACS-PRF 31099-AC1) for support of this work. #### References - [1] R.E. Banks and R.N. Haszeldine, Adv. Inorg. Radiochem., 3 (1961) - [2] R.A. Bekker, B.L. Dyatkin and I.L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 12 (1970) 2738. - [3] J. Hutchinson, J. Fluor. Chem., 3 (1973/1974) 429. - [4] G.L. Gard and C. Woolf, J. Fluor. Chem., 1 (1971/1972) 487. - [5] H. Wessolowski, G.V. Roschenthaler, R. Winter and G.L. Gard, Z. Naturforsch., Teil B, 46 (1991) 123. - [6] H. Wessolowski, G.V. Roschenthaler, R. Winter, G.L. Gard, G. Pon and R. Willett, Eur. J. Solid State Inorg. Chem., 29 (1992) 1173. - [7] J. Wessel, H. Hartl and K. Seppelt, Chem. Ber., 119 (1986) 453. - [8] R.E. Banks, M.G. Barlow, R.N. Haszeldine and W.D. Morton, J. Chem. Soc., Perkin Trans. I (1974) 1266. - [9] J.C. Hansen and P.M. Savu, US Patent 5 159 105, 1992. - [10] J.C. Hansen and P.M. Savu, US Patent 5 286 352, 1994. - [11] F.E. Behr, J.C. Hansen and P.M. Savu, 203rd American Chemical Society National Meeting, San Francisco, CA, April 1992. - [12] H.L. Cross, G. Cushing and H.L. Roberts, Spectrochim. Acta, 17 (1961) 344 - [13] R.J. Terjeson and G.L. Gard, J. Fluor. Chem., 35 (1987) 653. - [14] R.J. Willenbring, J. Mohtasham, R. Winter and G.L. Gard, Can. J. Chem., 67 (1989) 2037. - [15] L.F. Chen, J. Mohtasham and G.L. Gard, J. Fluor. Chem., 43 (1989) 329. - [16] R.J. Terjeson, R. Willenbring and G.L. Gard, J. Fluor. Chem., 76 (1996) 63. - [17] R.N. Haszeldine and K.J. Leadham, J. Chem. Soc. (1953) 1548. - [18] D.D. Coffman, J. Org. Chem., 14 (1949) 747.